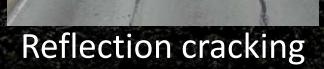
Updates on Cracking Models and Transfer Functions in ME Design

Kevin Hall and Nam Tran

Overview

Types of cracking predicted by ME Design
Model forms and enhancements (made and planned)

Cracking Models & Transfer Functions


Bottom-up cracking

Transverse cracking

Top-down cracking

Mixture Properties for Cracking Models

Types of Cracks	Mixture Properties
Bottom-Up	• Fatigue strength from flexural beam fatigue test
Top-Down	 Fatigue strength from flexural beam fatigue test
Transverse (Thermal)	Indirect tensile strengthIndirect tensile creep compliance
Reflection	 None (regression equation)

Bottom-Up Alligator Cracking

Bottom-Up Cracking Prediction

Steps	Mixture Properties
Allowable load applications	$N_{f-AC} = k_{f1}(C)(C_H)(\beta_{f1})(\varepsilon_t)^{k_{f2}\beta_{f2}}(E_{AC})^{k_{f3}\beta_{f3}}$
Cumulative damage index	$DI = \sum (\Delta DI)_{j,m,l,p,T} = \sum \left(\frac{n}{N_{f-AC}}\right)_{j,m,l,p,T}$
%Lane area of cracking	$FC_{bottom} = \left(\frac{C_4}{1 + e^{\left(C_1 + C_1 + C_2 + C_2' + \log(D_k + 100)\right)}}\right) + \left(\frac{1}{60}\right)$
Notes	 No changes or enhancements and none planned for the short-term

Top-Down Longitudinal Cracking

7

Top-Down Cracking Prediction

Steps	Mixture Properties
Allowable load applications	Same as bottom-up (assumes cracks initiate at the surface)
Cumulative damage index	Same as bottom-up
Length of longitudinal crack (ft/mi)	$FC_{top} = \left(\frac{C_4}{1 + e^{\left(C_1 - C_2 * log(D_{top})\right)}}\right) * 10.56$

Top-Down: Planned Enhancements

• ISSUE:

P-N

MEPDG Manual of Practice recommends the length of top-down cracking predicted by Pavement ME Design not be used to make revisions to the design.

Top-Down Cracking of Hot-Mix Asphalt Layers: Models for Initiation and Propagation

> Reynalide Roque Jam Zou University of Florida Gainesville, FL

Y. Richard Han Checknin Baek Songazai Thiranwukkorowy B. Shans Underwood Marthy N. Guddali orth Garolina Bato University Rateigh, MC

Contractor's Final Report for NCHRP Project 1-42A. Submitted February 2010

> Rational Conjective Highway Research Program TRANSPORTION RESEARCH SCARE

NCHRP 1-42A (Kim & Roque)

2 Primary Models:

1.VECD-based crack initiation model (time and location of crack initiation)

2.HMA-FM-based crack growth model (predict propagation of cracks over time)

Framework for approach...

Top-Down: Planned Enhancements

		THE NATIONAL						
About TRB	Annual Meeting	Calendar	Committees & Panels	Programs	Projects	Publications	Resource	s & Databa
		-						
NCUDE	2 01 57 [Activ							
NCHR	P 01-52 [Active							
NCHR	- 01-52 [Active	9]						
			Top-Down Cracking	of Asphalt	Pavement	Layers		
			Top-Down Cracking	of Asphalt	Pavement	Layers		
A Mech			Top-Down Cracking	of Asphalt	Pavement	Layers		
A Mech	anistic-Empirica ect Data	I Model for	Top-Down Cracking	of Asphalt	Pavement	Layers		
A Mech	anistic-Empirica ect Data	I Model for	40. A. C.	of Asphalt	Pavement	Layers	_	
A Mecha Proj Funds Staff R	anistic-Empirica act Data esponsibility:	I Model for	500,000 mir N. Hanna		Pavement	Layers		
A Mecha Proj Funds Staff R Resear	anistic-Empirica ect Data esponsibility: rch Agency:	I Model for \$ A	500,000 mir N. Hanna exas A&M Transportation I		Pavement	Layers		
A Mecha Proj Funds Staff R Reseau Princip	anistic-Empirica act Data esponsibility:	I Model for \$ A Ti R	500,000 mir N. Hanna		Pavement	Layers		

 Targeting a fracture mechanics approach, similar to approach used for:

- ME based transverse cracking (low temperature) model
- ME based reflection cracking model

Transverse Thermal Cracking

Transverse Cracking

Steps	Mixture Properties
Stress intensity factor	$K = \sigma_{tip}(0.45 + 1.99(C_o)^{0.56})$
Change in crack depth	$\Delta C = A(\Delta K)^n$
A & n parameters	From indirect tensile creep-compliance and strength
Amount of thermal cracking (ft/mi)	$TC = \beta_{tl} N \left[\frac{1}{\sigma_d} log \left(\frac{C_d}{H_{HMA}} \right) \right]$

Transverse Cracking

- Current AASHTO software predicts transverse cracks only caused by low temperature events.
- Multiple local calibration projects, summary of results:
 - Transverse cracks exhibited in warmer climates
 - MEPDG will not predict transverse cracking without a significantly high local calibration factor of the transfer function
 - Mechanism of transverse cracks in warm climates questioned for predicting transverse cracks:
 - AASHTO white paper prepared, but no action taken to date

Reflection Cracking

Reflection Cracking: v2.1 and Earlier

Version 2.1 and earlier versions:

 Prediction of reflection cracks was based on an empirical regression equation and only applicable to load-related cracks.

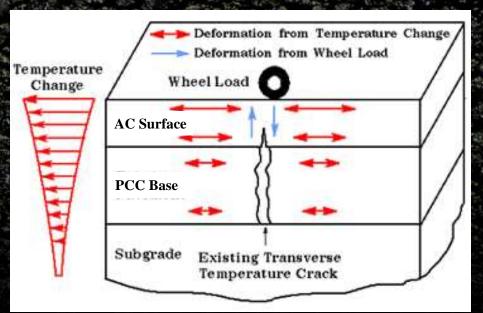
$$RC = \frac{100}{1 + e^{a+bt}}$$

Where:

RC = percentage of cracks reflected

t = time (yr)

 $a = 3.5 + 0.75 h_{ac}$


- $b = -0.688584 3.37302 h_{ac}^{-0.915469}$
- h_{ac} = HMA overlay thickness (in)

Reflection Cracking: v2.2 Enhancement (Developed from NCHRP 1-41, Lytton)

- Integrated the ME based fracture mechanics model in the software for predicting reflection cracks.
- Applicable to load and non-load related cracks of flexible, semi-rigid, intact PCC, and fractured PCC pavements.
 Key features include:
 - Traffic impact
 - Temperature profile computed using ICM
 - AC mix and binder properties and thermal stress computation done using existing ME Design approach
 - Utilization of ME Design AC material properties A, n
 - Adapting procedure for cracking for the longitudinal and transverse directions (i.e., for alligator cracking)

Reflection Cracking Mechanisms

	Differential vertical deflections across joints & cracks.	Traffic Induced	Crack initiates & propagates in shear.
2	Bending or increased tensile strains above joints & cracks.	Traffic Induced	Crack initiates in tension & propagates in tension & shear.
3	Thermal expansion & contraction of joints & cracks.	Thermal Induced	Crack initiates & propagates in tension.

Thermally Induced Reflective Cracking

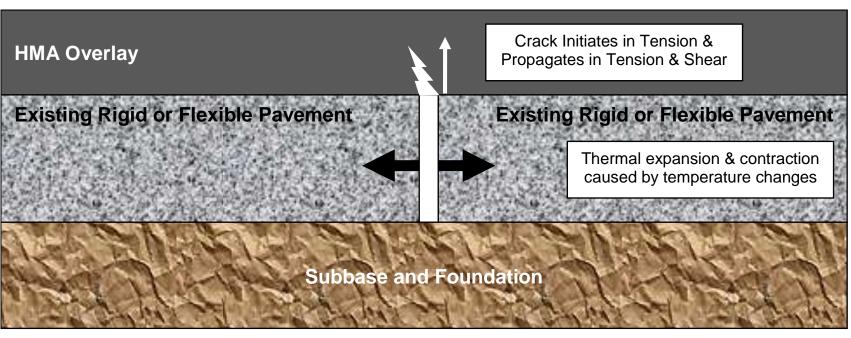
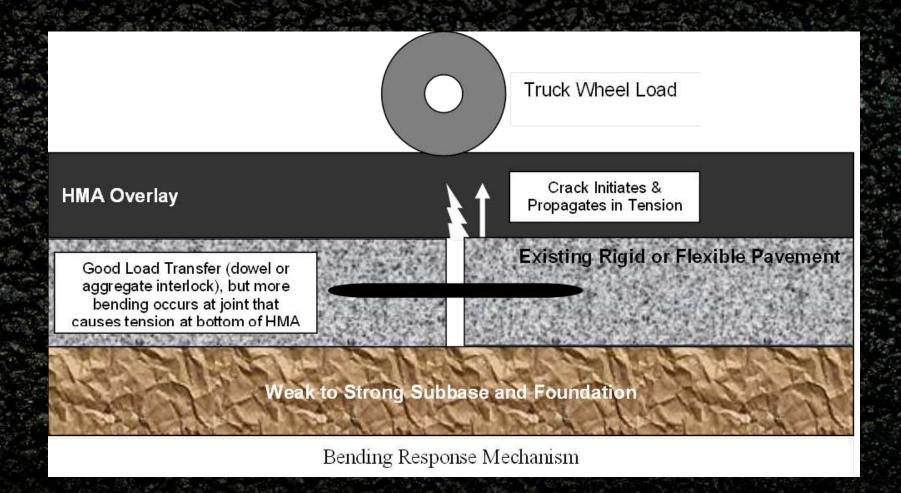
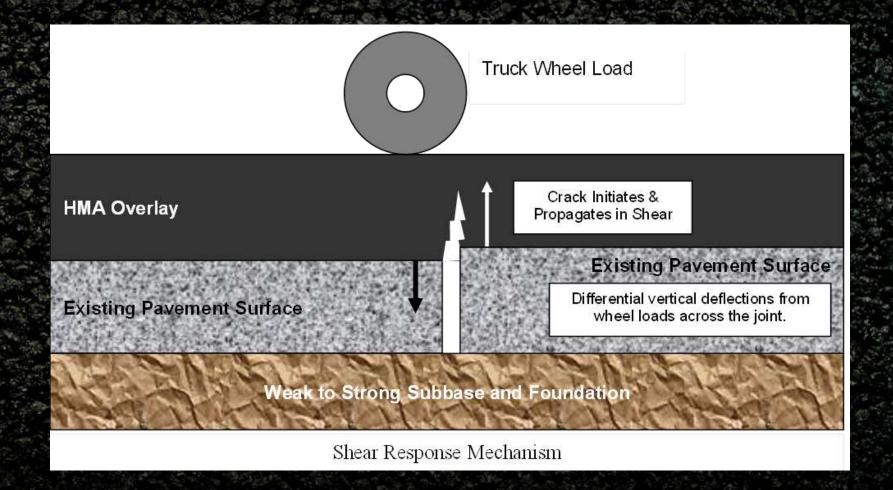
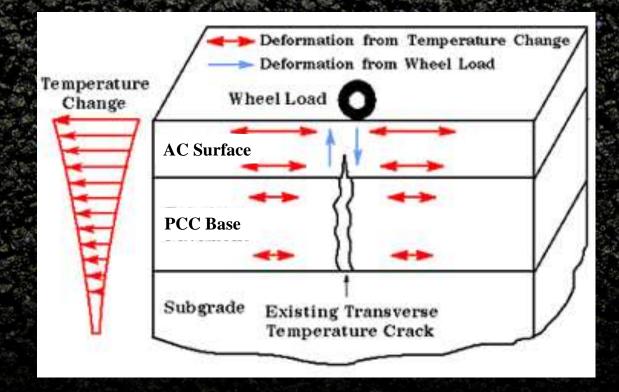




Figure 5.6b. Mechanisms of Thermally Induced Reflective Cracks of HMA Overlays

Bending Response Mechanism



Share Response Mechanism

Reflection Cracking - Observations

 From calibration, shear is significantly more critical than for the bending and tensile mechanisms.

Reflection Cracking Prediction Process

Define layer properties subjected to bending, shear & thermal stresses.

Generate stress intensity factors for specific rehabilitation strategy.

Characterize existing transverse cracks and fatigue cracks. Calculate damage increments & crack propagation from three mechanisms.

Predict total transverse & fatigue cracks.

MEPDG Cracking: Summary

Cracking Designation	Status
Bottom-Up	 No changes or enhancements; none planned for the short-term
Top-Down	 No changes to date; changes anticipated (NCHRP 1-52)
Transverse (Low Temp)	 No changes to date; need for changes identified (long-term)
Reflection	• Major enhancements in Version 2.2 (replaced regression with M-E)

References

Harold Von Quintus' presentation
ME Design v2.2 Training Webinar

http://me-design.com/MEDesign/Webinars.html

Phone conversations with Dr. Robert Lytton
MEPDG: A Manual of Practice, 2nd Ed

Questions?

Kevin Hall (kdhall@uark.edu)

Nam Tran (nht0002@auburn.edu)